The Seed Investor has been reporting on InMed Pharmaceuticals Inc. (CSE: IN) (OTCQB: IMLFF) and its proprietary Biosynthesis breakthroughs for some time now, and it looks like the industry is catching on to the massive possibilities that these breakthroughs could unlock.
Noted Cannabis and Culture site MerryJane.com just published an in-depth interview with InMed CEO Eric A. Adams on their new technology.
Below is an excerpt from the interview conducted by Randy Robinson:
In 1978, the biotech firm Genentech made a revolutionary breakthrough: they genetically modified the bacteria E. coli to produce human insulin. Diabetics require the insulin protein to absorb blood sugar into tissues, including the brain; without insulin, they may slip into a coma and die. Prior to 1978, insulin for diabetic patients came from pig or bovine pancreases, a costly, inefficient, and inhumane method for procuring an otherwise life-saving molecule. Insulin was much more expensive before it was derived from genetically modified E. coli, and the risk of running out of supply always loomed over the heads of patients prior to its mass production via bacteria. This technology was subsequently licensed to Eli Lilly, who built a $1 billion manufacturing facility to meet the needs of diabetic patients worldwide.
Today, one company has taken this idea of producing chemicals from E. coli and translated it to cannabis. InMed Pharmaceuticals, a Canadian firm, recently announced they have manufactured CBD and many other plant-based cannabinoids without ever planting a single cannabis seed.
Eric A. Adams is the CEO of InMed. A former chemistry student, he's spent his entire professional career at cutting-edge biotech and pharmaceutical companies around the world. "When I saw the technology that InMed has, I knew right away that it was going to be something big," says Adams. "The science behind the company is a real game-changer." MERRY JANE spoke to Adams over the phone to find out more about how InMed's technology works – and what they plan to do with it.
MERRY JANE: Can you explain how this technology works?
Eric A. Adams: There are three pillars to our technology at InMed. The first pillar is a bioinformatics database we use to match the potential therapeutic effects of each individual cannabinoid with the respective diseases. We can also go backwards; take any disease, and we'll decipher if there's a cannabinoid that is active against it. That's one of the foundations we have that allows us to expedite our early-stage research and target identification.
The second pillar is the biosynthesis. If we look through the list of 90-plus cannabinoids, and we determine, "Hey, number 85 may work against prostate cancer," that's interesting, but no one can economically make number 85, and you can't extract it from the plant because it's in such a small amount – it could cost you hundreds of thousands of dollars per gram.
Also, with many of these cannabinoids, you can't synthesize them. You can't go into a chemistry lab and just start mixing things until you get them, because there are so many different isomers of some of these compounds. It's difficult to isolate the right isomer [the correct molecular shape that is biologically active].
InMed has created a fermentation process where we can manufacture any one of the over-90 cannabinoids, and we think the cost is going to be very competitive with whatever else comes along. The final cannabinoids made with this biosynthesis process are identical to those found in nature. This really is the pathway to opening up the entire spectrum of cannabinoids to be looked at in terms of their therapeutic value.
The third pillar is our drug development programs – led by INM-750 (epidermolysis bullosa) and INM-085 (glaucoma). We have several other drug candidates in our pipeline for indications such as pain, neurodegenerative diseases, cancer, and others.
READ THE FULL INTERVIEW AT MERRYJANE.COM